



- 1. What is Misch metal? Give its use.
- 2. Why do most of the transition metal ions exhibit characteristic colour in aqueous solution?
- 3. Why do transition elements show variable oxidation states? How is the variability in oxidation states of d-block different from that of the p-block elements?
- 4. What is Lanthanoid contraction? Give its consequences.
- 5. Explain with equations, how the colour of a solution of  $K_2Cr_2O_7$  depends on pH.
- 6. Complete and balance the following chemical equations:
  - a)  $Cr_2O_7^{2-}$  +  $I^-$  +  $H^+ \rightarrow$
  - b)  $MnO_4^- + SO_3^{2-} + H^+ \rightarrow$
- 7. Answer the following questions:
  - a) Why do actonoids in general exhibit a greater range of oxidation states than the Lanthanoids?
  - b) Which element in the first series of transition elements does not exhibit variable oxidation states and why?
- 8. Describe the preparation of
  - a) Potassium dichromate from sodium chromate and
  - b) KMnO<sub>4</sub> from K<sub>2</sub>MnO<sub>4</sub>
- 9. a)  $E^0$  value for the Mn<sup>3+</sup>/ Mn<sup>2+</sup> couple is positive (+ 1.5 V) whereas that of  $Cr^{3+}/ Cr^{2+}$  is negative (-0.4 V). Why?
  - b) The chemistry of actinoids is not so smooth as that of lanthanoids.
  - c) Complete the following equation :

 $2MnO_4^- + 16 \text{ H}^+ + 5C_2O_4 \xrightarrow{2-} \rightarrow$ 

- 10. Explain the following observations:
  - a) Transition metals generally form coloured compounds.
  - b) Zinc is not regarded as a transition metal.
  - c) Transition elements and their compounds are generally found to be good catalysts in chemical reactions.

- 11. Account for the following:
  - a) The enthalpy of atomization of the transition metals is high.
  - b) The lowest oxide of a transition metal is basic while the highest is amphoteric or acidic.
  - c) Cobalt (II) is stable in aqueous solution but in the presence of complexing agents, it is easily oxidized.
- 12. i) Complete and balance the following chemical equations:
  - a)  $Cr_2O_7^{2-} + I^- + H^+ \rightarrow$
  - b)  $MnO_4^- + SO_3^{2-} + H^+ \rightarrow$
  - ii) How would you account for the following:
    - a) The oxidizing power of oxoanions are in the order  $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$
    - b) The third ionization enthalpy of manganese (Z = 25) is exceptionally high.
    - c)  $Cr^{2+}$  is a stronger reducing agent than  $Fe^{2+}$ .

\*\*\*\*\*\*